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When described in a grand canonical ensemble, a finite Coulomb system exhibits
charge fluctuations. These fluctuations are studied in the case of a classical
(i.e., non-quantum) system with no macroscopic average charge. Assuming the
validity of macroscopic electrostatics gives, on a three-dimensional finite large
conductor of volume V, a mean square charge OQ2P which goes as V1/3. More
generally, in a short-circuited capacitor of capacitance C, made of two conduc-
tors, the mean square charge on one conductor is OQ2P=TC, where T is the
temperature and C the capacitance of the capacitor. The case of only one
conductor in a grand canonical ensemble is obtained by removing the other
conductor to infinity. The general formula is checked in the weak-coupling
(Debye–Hückel) limit for a spherical capacitor. For two-dimensional Coulomb
systems (with logarithmic interactions), there are exactly solvable models which
reveal that, in some cases, macroscopic electrostatics is not applicable even for
large conductors. This is when the charge fluctuations involve only a small
number of particles. The mean square charge on one two-dimensional system
alone, in the grand canonical ensemble, is expected to be, at most, one squared
elementary charge.
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1. INTRODUCTION

This paper is dedicated to Michael Fisher on the occasion of his 70th
birthday. Part of it deals with the Debye–Hückel theory of Coulomb
systems, to which Michael brought elaborate refinements, in particular
insisting on the importance of taking hard cores into account. I apologize
for using here only the simple point-particle version.

I consider the classical (i.e., non-quantum) equilibrium statistical
mechanics of Coulomb systems: systems of charged particles interacting



through the Coulomb law (plus perhaps short-ranged forces), such as
plasmas or electrolytes. Such a system, when described by a grand canoni-
cal ensemble, is expected to exhibit charge fluctuations. The aim of the
present paper is to study these fluctuations, for a finite but macroscopic
system.

The grand canonical ensemble is often introduced by considering a
system in contact with a surrounding infinite system (the reservoir), with
possible exchanges of energy and particles between the system and the
reservoir. In this approach, it is assumed that the energy of interaction
between the system and the reservoir is negligible. This is indeed the case
for a finite but macroscopic system, when the interparticle forces are short-
ranged (then, the system energy goes as its volume, while the interaction
energy goes only as its surface area). However, this approach has to be
modified when there are long-ranged forces such as Coulomb ones. Then,
for the interaction energy between the system and the reservoir be disre-
garded, is is necessary to assume that the reservoir is infinitely far away
from the system under consideration. This is how the grand canonical
ensemble will be defined in the following.

Studying the charge fluctuations in a given large subvolume L of an
infinite Coulomb system (i.e., assuming that the reservoir is in contact with
the subvolume) is a different problem, which has already been studied and
solved. (1, 2) It was found that the mean square charge OQ2P in L behaves as
its surface area S (not its volume V). In the presently studied geometry
(infinitely remote reservoir), it will be argued that OQ2P is even weaker,
behaving as V1/3, for a 3-dimensional system. This behavior had been
conjectured by Lieb and Lebowitz, (3) but they could not prove it rigor-
ously, i.e., by a purely microscopic argument. Here, on the contrary, our
starting point will be the validity of macroscopic electrostatics of conduc-
tors, assumed without proof.

In general, in the grand canonical ensemble, the state of a system,
made of s species of particles, depends on s chemical potentials. However,
in the case of a Coulomb system, in the thermodynamic limit, the state
depends only on s − 1 chemical potentials and is the same as in a grand
canonical ensemble restricted to neutral configurations. (3) In the case of a
macroscopic but finite Coulomb system, there may be a non-zero average
charge OQP and one more chemical potential is needed for controlling it.
Here, we only consider the simple case in which there is only one reservoir,
which is an infinite Coulomb system of the same nature as the system
under consideration, and OQP is expected to vanish if macroscopic electro-
statics holds.

We shall first assume that our system and this reservoir are at some
distance of each other. Since they can freely exchange particles, the system
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and the reservoir can be considered as two conductors forming a short-cir-
cuited capacitor. In Section 2, a general simple expression for the mean
square charge of the system in that configuration will be derived; the case
of the system in the grand canonical ensemble will be obtained by removing
the reservoir to infinity. In Section 3, these general results will be checked
by a microscopic calculation in the weak-coupling (Debye–Hückel) limit.

Coulomb systems can be mimicked in a two-dimensional world, in
which the Coulomb potential 1/r must be replaced by the two-dimensional
solution of the Poisson equation − ln r. Working in two dimensions has
the advantage that exactly solvable models for the statistical mechanics of
Coulomb systems are available. However, in two dimensions, some specific
subtle points arise and deserve a separate discussion. In Section 4, two-
dimensional models will be considered, and cases when macroscopic elec-
trostatics cannot be used will be exhibited.

Rather than starting with a capacitor made of two conductors and
removing one of them to infinity, one might want to study directly the case
of one finite system in the grand canonical ensemble. How to formulate the
Debye–Hückel theory in a finite system is discussed in Appendix B.

2. CHARGE FLUCTUATIONS IN A CAPACITOR

Let us consider a capacitor, made of two macroscopic conductors A
and B separated by vacuum, with B surrounding A. Let C be the capaci-
tance. Let Q be the charge on conductor A, − Q the charge on conductor B.
When the capacitor is short-circuited, the average charge O± QP on each
conductor vanishes. If the conductors are describable by classical (non-
quantum) statistical mechanics, we claim that the mean square charge on
each conductor is

OQ2P=TC (2.1)

where T is the temperature (in units of energy). This relation is a special
case of Nyquist’s formula (4) which gives the electrical current fluctuations
in a linear electric circuit. The derivation of Nyquist’s formula relies on the
fluctuation-dissipation theorem in the theory of linear response. In the
present case, a more direct derivation of Eq. (2.1) can be made by using
the simpler classical static linear response theory, as follows.

Let us introduce some given external charges which create an infinite-
simal electric potential difference between the two conductors: let the
potential on conductor A minus the potential on conductor B be df (for
instance, in the case of a spherical capacitor, we introduce between the
conductors two spherical concentric layers carrying opposite uniformly
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distributed charges; then, these layers create a potential which is zero on
the outer conductor B and has some constant value df on the inner con-
ductor A). The corresponding change in the Hamiltonian is HŒ=df Q,
where Q is the charge on conductor A. The short-circuited capacitor will
respond by tranfering a charge dQ=−C df from conductor B to con-
ductor A, in such a way that the total potential difference (external plus
induced) between the conductors vanishes. Now, linear response theory says

− C df=dQ=−b(OHŒQP−OHŒPOQP)=−b dfOQ2P (2.2)

where b is the inverse temperature 1/T and the averages O · · ·P are taken in
the absence of the perturbation HŒ (we have used OQP=0). Equation (2.2)
proves Eq. (2.1). It should be noted that C will be the usual capacitance for
a given geometry only provided that macroscopic electrostatics is applic-
able. A necessary condition is that the sizes of the conductors and the sep-
aration between them be large compared to the microscopic scale.

The mean square charge of a finite macroscopic Coulomb system in
the grand canonical ensemble is obtained by sending conductor B to infin-
ity. Then the mean square charge on the macroscopic body A is given by
(2.1), where now C is the capacitance of the macroscopic body A alone.
For a 3-dimensional system, this capacitance goes as V1/3 where V is the
volume, as stated in the Introduction.

In the special simple case of a spherical capacitor, made of an inner
conductor of radius R1 and an outer conductor of radius R2, the capaci-
tance is

C=
1

(1/R1) − (1/R2)
(2.3)

It becomes R1 if R2 Q ., giving the mean square charge in a macroscopic
but finite spherical Coulomb system of radius R, in the grand-canonical
ensemble,

OQ2P=TR (2.4)

in agreement with previous findings about the charge correlations. (6)

Another limit of interest is when R1 becomes large compared to W=
R2 − R1 which keeps a fixed (macroscopic) value. One then obtains a plane
capacitor with plate areas S=4pR2

1 and plate separation W, and indeed
(2.3) becomes C=S/(4pW), giving for the mean square charge per unit
area on one plate

lim
S Q .

OQ2P

S
=

T
4pW

(2.5)
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3. WEAK-COUPLING LIMIT

We consider the simple geometry of a spherical capacitor made with a
classical Coulomb fluid: There are two concentric spheres, centered at the
origin, of radii R1 and R2 (R2 > R1). The shell between the spheres is empty.
The ball of radius R1 is filled with the fluid, as well as the whole space outside
the sphere of radius R2. The short-circuiting of the capacitor is described by
assuming that the two filled regions are allowed to freely exchange particles.

The weak-coupling limit is a high-temperature one which is expected
to be correctly described by the Debye–Hückel theory. The Coulomb fluid
is made of several species of particles of number densities na and charges qa.
For the system to be stable, in addition to the Coulomb forces, there
should be some short-ranged repulsive forces, but the weak-coupling limit
can also be viewed as a low-density one in which these short-ranged forces
can be neglected. Strictly speaking, the number densities are position-
dependent near the fluid boundaries. However, taking this into account
would only give corrections of higher order and therefore we consider
the densities as constants. The Debye wave number is defined as o=
(4pb ;a naq2

a)1/2. Let r(r) be the microscopic charge density at r. We shall
need the charge correlation function

Or(r) r(rŒ)P=C
ab

naq2
anbq2

bK(r, rŒ)+C
a

naq2
ad(r − rŒ) (3.1)

where both r and rŒ are in a filled region. K(r, rŒ) is the solution of the
partial differential equation

[D − o2(r)] K(r, rŒ)=4pbd(r − rŒ) (3.2)

where the source point rŒ is assumed to be in a filled region, while r can be
anywhere: o2(r)=o2 if r is in a filled region and o2(r)=0 if r is in the
empty region. K and its normal derivative must be continuous at the
boundaries r=R1 and r=R2, and K Q 0 as r Q ..

In the present Debye–Hückel scheme, the average charge on the sphere
of radius R1 vanishes, while the mean square charge on that sphere is

OQ2P=F
r < R1

dr F
rŒ < R1

drŒOr(r) r(rŒ)P (3.3)

The solution K of (3.2) is studied in Appendix A. When used in (3.1) and
(3.3) it gives

bOQ2P=
[1+oR2][oR1 cosh(oR1) − sinh(oR1)]

o[(1+oR2 − oR1) cosh(oR1)+sinh(oR1)]
(3.4)
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If both R1 and R2 are macroscopic, i.e., if oR1, oR2 ± 1, (3.4) becomes

bOQ2P=
oR1R2

2+oR2 − oR1
(3.5)

The mean square charge in a large spherical subdomain of an infinite
Coulomb system is retrieved by taking R1=R2=R in (3.5) which becomes

bOQ2P=
1

8p
oS (3.6)

where here S=4pR2 is the sphere area, in agreement with the general
formula (1)

OQ2P

S
=−

1
4

F dr rOr(0) r(r)P (3.7)

where Or(0) r(r)P is the infinite-system charge correlation function, obtained
by using in (3.2) the infinite-system function K(0, r)=−b exp(−or)/r.

If, on the contrary, R2 − R1 is also macrosopic, i.e., if we now assume
o(R2 − R1) ± 1 as well as oR1 ± 1 in (3.5), we do check the expected
spherical capacitor charge fluctuation (2.1) with capacitance (2.3), as well
as the grand-canonical fluctuation (2.4). The limit (2.5) of a plane capacitor
can also be taken.

The plane capacitor can also be studied directly. There are two parallel
planes x=0 and x=W, thus separated by a distance W. The slab between
the plates 0 < x < W is empty, while the Coulomb fluid fills the two
semiinfinite regions x < 0 and x > W outside the slab. In this geometry, it is
possible to solve (3.2) for a function K which now is a function of x, xŒ,
and the component y of r − rŒ along the plates (actually, one rather com-
putes the Fourier transform of K with respect to y). Then, one obtains the
mean square charge per unit area on one plate of (infinite) area S as

lim
S Q .

OQ2P

S
=F dy F

x < 0
dx F

xŒ < 0
dxŒOr(x, y) r(xŒ, 0)P (3.8)

The result is

lim
S Q .

bOQ2P

S
=

o

4p(2+oW)
(3.9)

If W=0, one retrieves (3.6). If W is macroscopic, i.e., oW ± 1, one
retrieves (2.5).
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The above considerations also apply to the case of a one-component
plasma (also called jellium), i.e., a system made of mobile point charges of
one species, with number density n and charge q, in a uniform neutralizing
background. The Debye wave number reduces to o=(4pbnq2)1/2. However,
for classical jellium, the grand canonical partition function is a convergent
series only if the background is kept fixed while one sums over the particle
number. (5) The same kind of prescription should be used here: regions A
and B are assumed allowed to exchange particles, but the backgrounds
keep a fixed charge density.

4. TWO-DIMENSIONAL COULOMB SYSTEMS

4.1. General Properties

In the two-dimensional systems discussed in this section, the electric
potential created at r by a unit charge at the origin is − ln(r/L) where L is
some fixed length. This choice of a two-dimensional solution of the Poisson
equation often makes these systems good toy models for mimicking three-
dimensional systems with the usual 1/r potential. One of the advantages of
working in two dimensions is the existence of exactly solvable models. For
avoiding any confusion, it should be stressed that these toy models do not
describe ‘‘real’’ charged particles such as electrons, which, even when
confined in a surface, still interact by the 1/r law.

In the simple case of a circular capacitor, made of an inner circular
conductor of radius R1 and an outer circular conductor of radius R2,
macroscopic two-dimensional electrostatics says that the capacitance is

C=
1

ln R2
R1

(4.1)

C goes to 0 as R2 Q ..2 More generally, the macroscopic capacitance of

2 In a previous paper, (6) another definition of the capacitance of a disk was used. The present
one (the limit of the capacitance of a circular capacitor when the outer conductor recedes to
infinity) is more appropriate here.

one finite conductor of any shape vanishes. This is because bringing from
infinity an additional charge q onto a conductor of characteristic size R,
already carrying a charge Q, would cost an energy of order qQ >.

R dr/r
which is infinite.
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It will however be shown below that, for the present problem of
charge fluctuations, the mimicking of three-dimensional systems which
might be expected at first glance does not always occur, because, in some
cases, although all relevant lengths are macroscopic, nevertheless macro-
scopic electrostatics cannot be used. In the case of a circular capacitor,
OQ2P may not be given by using (4.1) in (2.1).

4.2. Weak-Coupling Limit

The two-dimensional case is very similar to the three-dimensional one.
We now consider the simple geometry of a circular capacitor replacing the
concentric spheres by concentric circles: The regions r < R1 and r > R2 are
occupied by the Coulomb fluid, while the region R1 < r < R2 is empty. The
Debye–Hückel theory is again used, with 4p replaced by 2p in the defini-
tion of the Debye wave number o and in the r.h.s. of (3.2). The detail of the
calculation is given in Appendix A. The result is

bOQ2P=
oR1

I0(oR1)
I1(oR1)+

R1
R2

K0(oR2)
K1(oR2)+oR1 ln R2

R1

(4.2)

where Il and Kl are modified Bessel functions, while OQP=0. If both R1

and R2 are macroscopic, i.e., if oR1, oR2 ± 1, (4.2) becomes

bOQ2P=
oR1

1+R1
R2

+oR1 ln R2
R1

(4.3)

The mean square charge in a large circular subdomain of an infinite
system is retrieved by taking R1=R2=R in (4.3) which becomes

bOQ2P=
o

4p
S (4.4)

where S=2pR is the subdomain perimeter, in agreement with the two-
dimensional analog (1) of (3.7):

OQ2P

S
=−

1
p

F dr rOr(0) r(r)P (4.5)

where Or(0) r(r)P is the infinite-system charge correlation function,
obtained by using in (3.2) the infinite-system function K(0, r)=−bK0(or).

886 Jancovici



If, on the contrary, R2 − R1 is also macroscopic, i.e., if o(R2 − R1) ± 1
as well as oR1 ± 1, (4.3) becomes

bOQ2P=
1

ln R2
R1

(4.6)

in agreement with (2.1) and (4.1). In the limit R2 Q ., there is no charge
fluctuation.

4.3. Two-Component Plasma at C=2

The two-dimensional two-component plasma is made of two species of
point particles of opposite charges ± q, interacting through the pair poten-
tial ± q2 ln(r/L). The dimensionless coupling constant is C=bq2. The
system is stable against collapse of pairs of oppositely charged particles for
C < 2. Many exact results are now available for that model in its whole
stability range. (7–11) However, the correlation functions are fully known
only at C=2, for a variety of plane (12–17) (or even curved) geometries
(although, for a given fugacity, the density starts to diverge at C=2, the
truncated many-body distribution functions remain finite).

By an extension of previous calculations, the correlation functions at
C=2, in the circular capacitor geometry described in Section 4.2 are
obtained in Appendix C. The fugacity z (which is the same for both
species) appears through a parameter m=2pLz which has the dimension of
an inverse length and defines a microscopic scale (the bulk correlation
length is (2m)−1). Using these correlation functions in (3.3) gives

OQ2P=q2 C
.

l=−.

5[(X2+l2) I2
l (X) − X2I −2

l (X)]
× [lK2

l (aX) − aXKl(aX) K −

l(aX)]
6

5[lIl(X) Kl(aX)(a l − a−l) − XIl(X) K −

l(aX) a l+1

+XI −

l(X) Kl(aX) a−l]2
6

(4.7)

where X=mR1 and a=R2/R1. By charge symmetry, OQP=0.
The mean square charge in a large circular subdomain of radius R of

an infinite system is retrieved by taking X=mR and a=1 in (4.7) and
using for the modified Bessel functions Il and Kl the leading terms of their
uniform asymptotic expansions, (19) which are appropriate in the present
case of a large argument X and an index l which may also be large. It is
found that the sum on l can be replaced by an integral. The result is

OQ2P=q2 m
8

S (4.8)
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where S=2pR is the subdomain perimeter, in agreement with the general
formula (4.5), where the infinite-system charge correlation function (13, 14)

Or(0) r(r)P is (up to its here irrelevant d term) − 2q2[m2/(2p)]2 [K2
0(mr)+

K2
1(mr)].

If, on the contrary, not only R1 but also R2 − R1 are macroscopic, i.e.,
X ± 1 with a > 1, because of the a l, a−l, a l+1 terms in the denominator of
(4.7) only small values of |l| contribute to the sum, and the modified Bessel
functions can be simply replaced by the leading terms of their ordinary
asymptotic expansions, (19) valid for a large argument X or aX and a given
index l. In the limit X=mR1 Q . at fixed a=R2/R1, with bq2=2 being
taken into account, (4.7) becomes

bOQ2P=2 C
.

l=−.

1

(a l+1
2+a−(l+1

2))2
(4.9)

where a=R2/R1. It is clear that, when a has a finite value, the sum in (4.9)
cannot be replaced by an integral [which would reproduce (4.6)]. This sum
(4.9) can be expressed in terms of complete elliptic integrals, and evaluated
in a closed form (18) whenever R2/R1=exp(p `N), where N is any positive
integer. For instance, when N=1, bOQ2P=1/(2p).

(4.9) is, at first sight, a very surprising result. It does not reproduce the
value (4.6) expected on the basis of macroscopic electrostatics. On second
thought, one sees that the l.h.s. of (4.9) can be rewritten as 2OQ2P/q2 since
here C=bq2=2, and therefore OQ2P/q2 is of order unity, which means that
the fluctuation involves only a small number of particles. Thus, in spite of the
fact that the relevant lengths R1 and R2 − R1 are macroscopic, the number of
involved particles is not, and (4.6) based on macroscopic electrostatics should
not be expected to hold at C=2, and more generally at any finite tempera-
ture. However, in the weak-coupling (i.e., high-temperature) limit considered
in Section 4.2, bq2

Q 0, OQ2P/q2 as given by (4.6) becomes large, and this
result is consistent with macroscopic electrostatics, as it should.

It should be noted that, like (4.6), (4.9) indicates that there is no
charge fluctuation in the limit R2 Q ., i.e., for one macroscopic disk in the
grand canonical ensemble. Only the charge Q=0 contributes to the grand
canonical distribution.

Another limit of interest is when R1 Q . for a fixed value of W=
R2 − R1. One then obtains a two-dimensional ‘‘plane’’ capacitor. When this
limit is approached, ln a ’ W/R1 is small, and the sum in (4.9) can be
replaced by the integral

bOQ2P=
1
2

F
.

−.

dl
cosh2(lW/R1)

=
2pR1

2pW
(4.10)
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This is the result expected on the basis of macroscopic electrostatics, the
two-dimensional analog of (2.5) with now the plate area replaced by a plate
length 2pR1 and the capacitance the two-dimensional one C=2pR1/(2pW).
Since OQ2P/q2 now becomes large as R1 Q ., macroscopic electrostatics
should indeed hold. A direct derivation for a plane capacitor is feasible.

4.4. One-Component Plasma at C=2

The two-dimensional one-component plasma is made of one species
of point particles of charge q, interacting through the pair potential
− q2 ln(r/L), in a neutralizing background of fixed charge density − qn. Far
from the boundaries, the particle number density is n. The dimensionless
coupling constant again is C=bq2. Up to now, the system is exactly solv-
able (20) only at C=2, in which case the correlation functions are known for
a large variety of plane (21–24) (or even curved) geometries.

By an extention of previous calculations, the charge density and the
correlation function at C=2, in the circular capacitor geometry, are
obtained in Appendix D. The background is fixed, while the two regions
can freely exchange particles. There is no charge symmetry and the average
charge OQP on the inner disk does not automatically vanish. Using in (3.3)
(modified for taking OQP into account), the correlation function of
Appendix D gives the charge fluctuation on the inner disk. We introduce
the notations Y1=pnR2

1 and Y2=pnR2
2 and the incomplete gamma functions(25)

c(l+1, Y1)=F
Y1

0
dt e−tt l (4.11)

and

C(l+1+Y2 − Y1, Y2)=F
.

Y2

dt e−tt l+Y2 − Y1 (4.12)

The average charge on the inner disk is found to be

OQP=q C
.

l=0

c(l+1, Y1)
c(l+1, Y1)+D(l+1, Y1, Y2)

− qY1 (4.13)

where

D(l+1, Y1, Y2)=exp(Y1 ln Y1 − Y1 − Y2 ln Y2+Y2) C(l+1+Y2 − Y1, Y2)
(4.14)
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The charge fluctuation on the inner disk is found to be

OQ2P−OQP2=q2 C
.

l=0

c(l+1, Y1) D(l+1, Y1, Y2)
[c(l+1, Y1)+D(l+1, Y1, Y2)]2 (4.15)

The integrands in (4.11) and (4.12) have a maximum (a sharp one when
l is large) at t=l and t=l+Y2 − Y1, respectively. Therefore, c(l+1, Y1)
becomes small when l > Y1, while C(l+1+Y2 −Y1, Y2) and thus D(l+1, Y1, Y2)
become small when l < Y1. The summand in (4.15) has a maximum near
l=Y1.

The results for a large circular subdomain of radius R of an infinite
system are retrieved by taking R1=R2=R, i.e., Y1=Y2=pnR2. Then
(4.13) gives OQP=0. Using for the incomplete gamma functions (4.11) and
(4.12) the Tricomi asymptotic representation (25)

c(l+1, Y) ’ C(l+1) 51
2
+p−1/2 Erf 1 Y − l

(2Y)1/2
26 (4.16)

where C is the complete gamma function and Erf is the error function (this
representation is appropriate when Y is large and l is close to Y), it is
found that the sum on l in (4.15) can be replaced by an integral. The result
is

OQ2P=q2 n1/2

2p
S (4.17)

where S=2pR is the subdomain perimeter, again in agreement with the
general formula (4.5), where the infinite-system charge correlation function (21)

Or(0) r(r)P now is (up to its here irrelevant d term) − q2n2 exp(−pnr2).
We now turn to the case when not only R1 but also R2 − R1 are

macroscopic, i.e., Y1 ± 1 with a=R2/R1=(Y2/Y1)1/2 > 1. The average
charge (4.13) does not seem to have a simple expression. For investigating
the charge fluctuation (4.15), it is convenient to rewrite the summand in it
as [(D/c)1/2+(c/D)1/2]−2. As it will be seen a posteriori, now the relevant
values of l − Y1 in the sum (4.15) are only of the order of a few units (rather
than of the order of Y1/2

1 ) and therefore the Erf term in the Tricomi repre-
sentation (4.16) can be omitted and the incomplete gamma functions
just replaced by half the corresponding complete one. Furthermore, one
can use for these complete gamma functions the Stirling asymptotic
expansions C(1+l) ’ exp[l ln l − l+(1/2) ln(2pl)] and the similar one for
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C(l+1+Y2 − Y1). Neglecting terms of order 1/Y1 or smaller, for a given
value of l − Y1, in ln(D/c), one finds

D(l+1, Y1, Y2)
c(l+1, Y1)

=exp 51 l − Y1+
1
2
2 ln(Y2/Y1)6 (4.18)

Finally, one can shift the summation index in (4.15), replacing l − Y1 by
l − Ȳ1, where Ȳ1 is the non-integer part of Y1 such that 0 [ Ȳ1 < 1, and
extend the summation to − . in the present large-Y1 limit. Thus, bq2=2
being taken into account,

b(OQ2P−OQP2)=2 C
.

l=−.

1

(a l − Ȳ1+1
2+a−(l − Ȳ1+1

2))2
(4.19)

where a=R2/R1. The form of (4.19) justifies a posteriori our above
statement that the relevant values of l − Y1 in (4.15) are only of the order of
a few units.

Here too, for a finite value of a, the sum (4.19) cannot be replaced by
an integral and does not reproduce the value (4.6) expected on the basis of
macroscopic electrostatics. The reason is the same as in the case of the two-
component plasma: the fluctuation involves only a small number of par-
ticles. If Ȳ1=0, i.e., if the background charge − qnpR2 on the inner disk is
an integer number of elementary charges − q, the fluctuation (4.19) for the
one-component plasma is the same as the fluctuation (4.9) for the two-
component plasma; we have no explanation to offer.

The case of one disk alone, in the grand canonical ensemble (with
a fixed background), is obtained by taking the limit R2 Q .. Now the
average charge on the disk has a simple form. For obtaining it, it is
convenient to rewrite the summand in (4.13) as [1+(D/c)]−1, where
now, from (4.18), D/c=0 if l < Y1 − (1/2), D/c=1 if l=Y1 − (1/2), and
D/c=. if l > Y1 − (1/2). Therefore, since the summation index l is an
integer,

OQP=−qȲ1 if Ȳ1 < 1
2

OQP=0 if Ȳ1=1
2

OQP=q(1 − Ȳ1) if Ȳ1 > 1
2

(4.20)

For the behavior of the fluctuation (4.19), in the limit a Q ., two cases
have to be distinguished.
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OQ2P−OQP2=0 if Ȳ1 ]
1
2

OQ2P−OQP2=
q2

4
if Ȳ1=

1
2

(4.21)

These results have a simple interpretation: − qY1=−qpnR2
1 is the negative

background charge. Taking into account a (necessarily integer) number of
positive particles gives a total charge (background plus particles) Q. If
Ȳ1 ] 1/2, only one value of Q contributes to the grand canonical ensemble:
the one which corresponds to the smallest possible value of |Q|. If however
Ȳ1=1/2, this smallest possible value is |Q|=(q/2) which corresponds to
two possibilities Q=± (q/2) with equal probabilities.

The two-dimensional ‘‘plane capacitor’’ limit (R1 Q . for a fixed value
of W=R2 − R1) is the same as in the case of a two-component plasma. As
this limit is approached, the sum in (4.19) can be replaced by an integral,
and OQP=0 because of the geometrical symmetry between the two flat
plates. Again, the result is (4.10), in agreement with macroscopic electro-
statics.

5. SUMMARY AND CONCLUSION

For studying the charge fluctuations on a macroscopic but finite clas-
sical Coulomb system in the grand canonical ensemble, i.e., when the
system is allowed to exchange particles with a reservoir, in a first step we
have considered a capacitor: one electrode is the finite system under con-
sideration, the other electrode surrounds the first one at some distance of it
and extends to infinity. Both electrodes are assumed to be made of the
same Coulomb fluid. The capacitor is short-circuited, which means that the
two electrodes can freely exchange particles. When the external electrode
recedes to infinity, the internal one becomes one Coulomb system in a
grand canonical ensemble. For actual calculations, the simple geometry of
a spherical capacitor has been chosen.

For a three-dimensional system, there is no surprise. A short-circuited
capacitor of capacitance C can be considered as an electric oscillator, and it
is rather natural to state that its average energy OQ2P/2C is (1/2) T: this
gives (2.1). This general formula is supported by the derivation of Section 2,
on the basis of linear response theory and macroscopic electrostatics. It has
been checked in Section 3, in the Debye–Hückel theory.

Two-dimensional Coulomb systems (with a logarithmic interaction)
are more tricky. Since some of them are exactly solvable, it was tempting
to test on them the general formula (2.1) for the charge fluctuations. It
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has been a surprise for the author that this general formula is not valid for
a circular capacitor at some finite temperature. On second thought, one
realizes that the charge fluctuations involve only a small number of par-
ticles, and therefore one should not expect the validity of a macroscopic
formula.

In the limiting case of one disk alone in a grand canonical ensemble
(i.e., the disk is allowed to exchange particles with a reservoir at infinity), in
general there is no charge fluctuation and the charge Q is such that |Q| has
the smallest possible value (0 when possible, a fraction of the elementary
charge q in the case of a one-component plasma with a background charge
which is not an integer number of elementary charges − q). An exception
is when the background charge of the one-component plasma is of the
form − [(N+(1/2)] q with N integer. Then both values Q=± (1/2) q are
equally probable. We cannot explain why there is no charge fluctuation in
the cases when the smallest possible value of the total charge is 0. Indeed,
in these cases, bringing another elementary charge ± q from infinity would
cost only a finite energy and one would expect Q=± q to contribute to the
grand canonical ensemble. That these values Q=± q do not contribute
might be a special feature of the solvable models at C=2. We just do not
know.

Another tricky feature of two-dimensional Coulomb systems is that
the two-dimensional Coulomb potential − ln(r/L) does not vanish at infin-
ity, if the length L is finite. As discussed in Appendix B, for obtaining sen-
sible results in the Debye–Hückel theory, it is necessary to take the limit
L Q ..

APPENDIX A: DEBYE–HÜCKEL THEORY IN A SPHERICAL OR

CIRCULAR CAPACITOR

In the spherical capacitor geometry, the solution of (3.2) can be
expanded in Legendre polynomials Pl(cos h) (where h is the angle between
r and rŒ) in the form

K(r, rŒ)= C
.

l=0
kl(r, rŒ) Pl(cos h) (A.1)

When this expansion is used in (3.1) and (3.3), only the term l=0 survives
the angular integrations. Thus, we only need the function k0(r, rŒ). The
solution of (3.2) for an infinite system is K(r, rŒ)=−b exp(|r − rŒ|)/|r − rŒ|
and its l=0 part is − b sinh(or< ) exp(−or> )/(orrŒ), where r< (r> ) is
the smaller (the larger) of r and rŒ. In the present geometry, there are
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additional ‘‘reflected’’ and ‘‘transmitted’’ terms. When the source point rŒ is
in the inner sphere (rŒ < R1), the solution is of the form

k0(r, rŒ)=−
b

orrŒ
[sinh(or< ) exp(−or> )+a sinh(or) sinh(orŒ)] (r, rŒ < R1)

k0(r, rŒ)=−b
sinh(orŒ)

rŒ

5 b
or

+c6 (rŒ < R1, R1 < r < R2)

k0(r, rŒ)=−
bd
orrŒ

sinh(orŒ) exp(−or) (rŒ < R1, r > R2)

(A.2)

This solution has the appropriate singularity at r=rŒ, is otherwise regular
at r=0 and rŒ=0, and goes to 0 when r Q .. The four coefficients
a, b, c, d are to be determined by the requirements that k0(r, rŒ) and
“k0(r, rŒ)/“r be continuous at r=R1 and r=R2. In particular, one finds

a=
exp(−oR1)(oR2 − oR1)

(1+oR2 − oR1) cosh(oR1)+sinh(oR1)
(A.3)

Using the first equation (A.2) and (A.3) in (3.1) and (3.3) gives (3.4).
In two dimensions, in the circular capacitor geometry, the calculation

is very similar to the above one. The expansion (A.1) is replaced by

K(r, rŒ)= C
.

l=0
kl(r, rŒ) cos(lh) (A.4)

where the l=0 part is, in terms of modified Bessel functions I0 and K0,
when rŒ < R1,

k0(r, rŒ)=−b[I0(or< ) K0(or> )+aI0(or) I0(orŒ)] (r, rŒ < R1)

k0(r, rŒ)=−bI0(orŒ)[b ln(or)+c] (rŒ < R1, R1 < r < R2)

k0(r, rŒ)=−bdI0(orŒ) K0(or) (rŒ < R1, r > R2)

(A.5)

By the same method as above, the coefficient a is found as

a=
− K0(oR1)+R1

R2

K0(oR2)
K1(oR2) K1(oR1) − oR1K1(oR1) ln R1

R2

I0(oR1)+R1
R2

K0(oR2)
K1(oR2) I1(oR1) − oR1I1(oR1) ln R1

R2

(A.6)

Using the first equation (A.5) and (A.6) in (3.1) and (3.3), and the
Wronskian of the Bessel functions, gives (4.2).
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APPENDIX B: DEBYE–HÜCKEL THEORY IN A FINITE SYSTEM

In Section 3 and Appendix A, the Debye–Hückel differential equation
(3.2) was written and solved in the spherical capacitor geometry; with
minor modifications, the same approach holds in the two-dimensional case,
for a circular capacitor, as discussed in Section 4.2 and Appendix A. In
these geometries, the Coulomb fluid extends to infinity in the region r > R2

and it is obvious that the boundary condition should be K(r, rŒ) Q 0 as
r Q .) (In this approach perfect screening is globally satisfied: The charge
of one particle plus the charge it induces in the two conductors sum to
zero. However, there is no perfect screening if one takes into account only
the charge of a particle sitting on one of the conductors and the charge it
induces on that conductor only, and this gives rise to a charge fluctuation
on each conductor). The case of one sphere or disk in the grand canonical
ensemble was obtained by taking the limit R2 Q . at the end of the
calculation.

The question arises of how to formulate the Debye–Hückel theory in
the grand canonical ensemble, directly starting with only a sphere or a disk
of radius R. What is the boundary condition to be imposed at r=R ?
Choquard et al. (26) have already investigated this problem. Nevertheless, we
revisit it, hoping to clarify some delicate points.

We start with the three-dimensional case. An unambiguous way of
formulating the Debye–Hückel theory is to start with a full diagrammatic
expansion (27) in the grand canonical ensemble, and to make a topological
reduction replacing the fugacity (fugacities) by the density (densities). The
Debye–Hückel correlation function is obtained by resumming a class of
diagrams (the chain diagrams), or, equivalently, by taking for the function
K in Eq. (3.1) the solution of the integral equation

K(r, rŒ)=−
b

|r − rŒ|
−

o2

4p
F drœ

1
|r − rœ|

K(rœ, rŒ) (B.1)

This integral equation can also be seen as the Ornstein–Zernicke equation
in which the direct correlation function between particles of species a and b
is approximated by − b times their bare Coulomb interaction qaqb/|r − rŒ|.
In a finite system, the densities na in o2=4pb ;a naq2

a are position-depen-
dent near the boundaries. However, for the large-size systems considered
here, this effect can be neglected and o2 will be taken as a constant in the
whole system.

By taking the Laplacian of both sides of the integral equation (B.1),
one obtains the partial differential equation (3.2). However, the integral
equation provides the boundary condition to be used in (3.2). In the
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presently studied case of a sphere of radius R, we can use the expansion
(A.1) in Legendre polynomials. For brevity we only consider the l=0 part.
The integral equation (B.1) gives for the boundary condition on the surface
r=R (with rŒ < R)

k0(R, rŒ)=−
b

R
51+

o2

b
F

R

0
drœ rœ

2k0(rœ, rŒ)6 (B.2)

Using in (B.2) the general form (A.2) of the solution of the partial differ-
ential equation (3.2) (with now r, rŒ [ R) and performing the integral
determines the coefficient a as

a=
exp(−oR)
cosh(oR)

(B.3)

(The square bracket in the r.h.s. of (B.2) does not vanish: there is no
perfect screening on the sole sphere). This directly obtained result (B.3)
is identical to the limit of the spherical capacitor a coefficient (A.3) (with
R1=R) as R2 Q .. One recovers the mean square charge (2.4). The exis-
tence of a fluctuation confirms that the formulation of the Debye–Hückel
theory by the integral equation (B.1) is a grand canonical one.

The two-dimensional case is more tricky. The bare Coulomb interac-
tion between two unit charges now is − ln(|r − rŒ|/L), with L some fixed
length. The integral equation now is

K(r, rŒ)=b ln
|r − rŒ|

L
+

o2

2p
F drœ ln

|r − rœ|
L

K(rœ, rŒ) (B.4)

with o2=2pb ;a naq2
a. The l=0 part of the expansion (A.4) obeys the

boundary condition (with rŒ < R)

k0(R, rŒ)=b ln
R
L
51+

o2

b
F

R

0
drœ rœk0(rœ, rŒ)6 (B.5)

Using in (B.5) the general form (A.5) of the solution of the two-dimen-
sional analog of the partial differential equation (3.2) (with now r, rŒ [ R)
and performing the integral determines the coefficient a as

a=
oRK1(oR) ln R

L+K0(oR)

oRI1(oR) ln R
L − I0(oR)

(B.6)
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This result (B.6) is unacceptable as it stands, since it depends on the
arbitrary length L, which only determines the zero of the potential and
should not enter the correlation functions. Actually, using a Coulomb
interaction − ln(r/L) which does not vanish at infinity causes difficulties
at many places. For instance, the Coulomb energy of a macroscopic disk
of radius R, carrying the macroscopic charge Q near its circumference,
would be (1/2) Q2 ln(L/R), negative if R > L. Thus, in the grand canonical
ensemble, configurations of infinite |Q| would be favored, causing the
grand canonical partition function to diverge. This seems to indicate that
the limit L Q . (such that the zero of the potential recedes to infinity)
should be taken in (B.6), which then becomes

a=
K1(oR)
I1(oR)

(B.7)

This result (B.7) is identical to the limit of the circular capacitor a coeffi-
cient (A.6) (with R1=R) as R2 Q .. It might even be noted that, if in
(A6) we take R1=R and R2=L ± R and neglect the term of order
R1/R2=R/L in both the numerator and the denominator, (B.6) is recov-
ered. This is a further indication that the limit L Q . should be taken in
the case of a system made of one disk only. Now, there is perfect screening
(the square bracket in the r.h.s. of (B.5) vanishes) and there is no charge
fluctuation on the disk.

Still another way of dealing with a finite system, in three or two
dimensions, would be to first assume that the whole space external to the
system is filled with a medium of Debye wave number oŒ and solve the
partial differential equation (3.2) (or its two-dimensional analog) in the
whole space, taking o2(r)=o2 in the system and o2(r)=oŒ

2 outside, with
the proper continuity conditions on the system boundary and K(r, rŒ) Q 0
as r Q .. One recovers the same results as above.

APPENDIX C: TWO-DIMENSIONAL TWO-COMPONENT

PLASMA AT C=2

For this exactly solvable model, (14) the charge correlation function can
be expressed in terms of Green functions G++(r, rŒ) and G−+(r, rŒ) as

Or(r) r(rŒ)P=−2m2q2[|G++(r, rŒ)|2+|G−+(r, rŒ)|2]+n(r) q2d(r − rŒ)
(C.1)

where m is a rescaled fugacity such that (2m)−1 is the bulk correlation
length, and n(r) is the total number density (actually, n is a divergent
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quantity, but it will be seen that this divergence causes no difficulty here).
In (C.1), the charge symmetry of the model has been taken into account.
We consider the circular capacitor geometry and the source point rŒ is in
the inner disk (rŒ < R1). For (C.1) to be the charge correlation function,
r must be in a filled region (r < R1 or r > R2).

When r is in a filled region, the Green functions obey the equations (14)

(m2 − D) G++(r, rŒ)=md(r − rŒ) (C.2)

and

G−+(r, rŒ)=−
exp(ij)

m
1 “

“r
+

i
r

“

“j
2 G++(r, rŒ) (C.3)

where (r, j) are the polar coordinates of r. The solution of (C.2) is an
expansion of the form

G++(r, rŒ)=
m
2p

C
.

l=−.

[Il(mr< ) Kl(mr> )+alIl(mrŒ) Il(mr)] exp[il(j − jŒ)]

(r, rŒ < R1)

G++(r, rŒ)=
m
2p

C
.

l=−.

dlIl(mrŒ) Kl(mr) exp[il(j − jŒ)]

(rŒ < R1, r > R2)

(C.4)

These expansions have the proper singularity at r=rŒ, are otherwise
regular at r=0 and rŒ=0, and go to zero when r Q .. As to G−+, (C.3)
gives

G−+(r, rŒ)=
m
2p

C
.

l=−.

[Il(mrŒ) Kl+1(mr) − alIl(mrŒ) Il+1(mr)]

× exp[i(l+1) j − iljŒ] (rŒ < r < R1)

G−+(r, rŒ)=
m
2p

C
.

l=−.

dlIl(mrŒ) Kl+1(mr)

× exp[i(l+1) j − iljŒ] (rŒ < R1, r > R2)

(C.5)
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When r is in the empty region R1 < r < R2 (where m=0), as functions
of r, G++ depends only on z=r exp(ij) and G−+ depends only on z̄=
r exp(−ij). Thus, the expansions are of the forms

G++(r, rŒ)=
m
2p

C
.

l=−.

blIl(mrŒ)(mr) l exp[il(j − jŒ)] (rŒ < R1, R1 < r < R2)
(C.6)

and

G−+(r, rŒ)=
m
2p

C
.

l=−.

clIl(mrŒ)(mr)−(l+1)

× exp[i(l+1) j − iljŒ] (rŒ < R1, R1 < r < R2) (C.7)

The coefficients al, bl, cl, dl are to be determined by the requirements
that G++ and G−+ be continuous at r=R1 and r=R2. In particular, after
having used some functional relations between Bessel functions, one finds

dl=[lIl(X) Kl(aX)(a l− a−l) − XIl(X) K −

l(aX) a l+1+XI −

l(X) Kl(aX) a−l]−1

(C.8)

where X=mR1 and a=R2/R1.
For computing the mean square charge on the inner disk, using the

perfect screening relation > drOr(r) r(rŒ)P=0, where the integral is on the
whole space, it is convenient to rewrite (3.3) as

OQ2P=−F
r > R2

dr F
rŒ < R1

drŒOr(r) r(rŒ)P (C.9)

and to use (C.1), omitting the self part nq2d(r − rŒ) which does not contri-
bute to (C.9). The angular integrations are easily performed, by using the
mutual orthogonality of the functions exp(ilj), and (C.9) becomes

OQ2P=2m4q2 C
.

l=−.

d2
l F

R1

0
drŒ rŒI2

l (mrŒ) F
.

R2

dr r[K2
l (mr)+K2

l+1(mr)]
(C.10)

where dl is given by (C.8). After having performed the integrations in
(C.10) and used some functional relations between Bessel functions, one
obtains (4.7).
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APPENDIX D: TWO-DIMENSIONAL ONE-COMPONENT

PLASMA AT C=2

For this exactly solvable model, (21, 23) the charge density (including the
background contribution) and the charge correlation function can be
expressed in terms of a projector P(r, rŒ)

Or(r)P=q[P(r, r) − n] (D.1)

and

Or(r) r(rŒ)P−Or(r)POr(rŒ)P=q2[ − |P(r, rŒ)|2+P(r, r) d(r − rŒ)] (D.2)

We consider the circular capacitor geometry. For (D.1) and (D.2) to be the
charge density and correlation, respectively, r and rŒ must be in a filled
region.

The electric potential qV(r) created by the background will be needed.
It obeys DV(r)=2pn in the filled regions r < R1 and r > R2. It obeys
DV(r)=0 in the empty region R1 < r < R2. At the boundaries r=R1 and
r=R2, V(r) and dV/dr must be continuous. Up to an overall irrelevant
additive constant,

V(r)=
1
2

pnr2 (r < R1)

V(r)=
1
2

pnR2
1+pnR2

1 ln
r

R1
(R1 < r < R2)

V(r)=
1
2

pn(R2
1 − R2

2)+pnR2
1 ln

R2

R1
+

1
2

pnr2+
1
2

pn(R2
1 − R2

2) ln
r

R2
(r > R2)

(D.3)

P(r, rŒ) is the projector on the functional space spanned by the func-
tions kl(r)=exp[ − V(r)][r exp(ij)] l (l=0, 1, 2, 3,...) (this definition of kl

holds in the filled regions r < R1 and r > R2, while kl(r)=0 in the empty
region R1 < r < R2):

P(r, rŒ)= C
.

l=0

1
Cl

kl(r) k̄l(rŒ)

= C
.

l=0

1
Cl

exp[ − V(r) − V(rŒ)] r lrŒ
l exp[il(j − jŒ)] (D.4)
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where Cl is the normalization constant

Cl=1F
r < R1

+F
r > R2

2 dr exp[ − 2V(r)] r2l

=
p

(pn) l+1 [c(l+1, Y1)+D(l+1, Y1, Y2)] (D.5)

where the functions c and D are defined in (4.11) and (4.14).
The average charge on the inner disk is

OQP=F
r < R1

drOr(r)P (D.6)

Using (D.1) and (D.4) in (D.6) and performing the integration gives (4.13).
The charge fluctuation on the inner disk is

OQ2P−OQP2=F
r < R1

dr F
rŒ < R1

drŒ[Or(r) r(rŒ)P−Or(r)POr(rŒ)P] (D.7)

Using (D.2) and (D.4) in (D.7) and performing the integrations, using the
mutual orthogonality of the functions exp(ilj), gives (4.15).
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